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In Part I, the flow fields in the initial stage and the pre-bubble forma- 
tion stage of the radiation-induced cavitation process in a metastable 
superheated liquid were solved by the scaling transformation and 
donor-cell treatment, respectively. In Part II, Miller’s simple moving 
finite element method (simple MFEM) was used to compute the flow 
fields of the vapor-liquid interface formation stage and the post-inter- 
face formation stage for superheated isobutane and Freon-12. 
However, to be comprehensive, the MFEM in non-hierarchical 
p-refinement form was derived. The results, which are in fair agreement 
with the experimental data, give estimates of the threshold energies for 
cavitation, calculate the speeds of both the interface and the shock 
wave, determine the time scales and the length scales involved in the 
process. The results presented describe, for the first time, the detailed 
transformation occurring inside a superheated-droplet neutron detec- 
tor. Results are immediately applicable to bubble chambers. 0 1992 

Academx Press. Inc 

1. INTRODUCTION 

The flow fields at the initial stage and pre-bubble forrna- 
tion stage were solved in Part I [ 141, using the scaling 
transformation and implicit donor-cell finite difference 
method (FDM). But the non-adaptive finite difference 
method cannot be expected to give satisfactory answers in 
describing the formation and growth of the vapor-liquid 
interface. Indeed, even prior to the first appearance of this 
interface, we have witnessed (part I) a steady increase (with 
time) of the density gradient in the medium. This steepening 
in density gradient is caused not so much by the usual non- 
linear convection terms but by the behavior of the pv-curve 
at fluid temperatures slightly above the critical temperature. 
It occurs in anticipation of the phase change that will soon 
follow. Evidently some type of adaptive computational 
schemes [2, 3, l&13, 151 must be used to describe the 
phenomenon. 

vapor-liquid interface. It is for this reason that a scaling 
transformation in the radial coordinate is made to render 
the shock location fixed at i? = 1. However, after the bubble 
is formed, the propagation of the shock wave is largely 
governed by the growth or decay of the bubble. The length 
scale of interest is of the order of the radius of the bubble 
rather than the radius of the shock wave. It is evident that 
maintaining the scaling transformation used in the earlier 
pre-bubble formation stage would diminish the region of 
interest to an increasingly smaller size. This is obviously 
undesirable; therefore, the earlier scaling transformation 
must be abandoned and the location of the propagating 
shock front must be determined at each instant. Thus, in the 
radiation-induced cavitation problem, it is necessary to 
have an adaptive computational method which can easily 
deal with multiple moving steep gradients. After some con- 
sideration, we adopted Miller’s simple moving finite element 
method (simple MFEM) [4,7,8] to compute the flow fields 
in the bubble formation and development stages. The 
solutions of the finite difference method in the pre-bubble 
formation stage will be used as the starting values of the 
MFEM. (The reasons why we did not connect the MFEM 
directly with the similarity solution have already been 
explained in the introduction of part I). 

In this part, Miller’s moving finite element method in 
general form will first be derived. The governing equations 
will be established in the variables convenient for describing 
the changes in the bubble formation stage and post-bubble 
formation stage. Next, the implementation of the MFEM 
will be discussed. Two media, i.e., isobutane and Freon-12, 
will be tested and the principal results exhibited. 

2. MILLER’S MOVING FINITE ELEMENT METHOD 

There is another relevant point which should be made. In The MFEM moves the nodes into regions of steep 
the initial and pre-bubble formation stages, shock propaga- gradients automatically and is especially useful in handling 
tion is determined principally by the energy deposition and multiple moving steep gradients with far fewer nodes than 
is closely coupled to the process leading to formation of the would otherwise be the case. The non-hierarchical 
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p-refinement MFEM will be derived in this section for the 
following two purposes: First, the piecewise linear 
approximation (Miller’s scheme) is its simplest case; second, 
it will be used in our future work. 

In this method, one considers a system of partial differen- 
tial equations 

Ii-L(u)=O, t20, (1) 

where u and L are vector-valued functions, i.e., u = 
(241, u*, . ..) u ) * T, ti is the time derivative of u and L = 
(L’, L2, . ..) Lp)T is some partial differential operator, linear 
or nonlinear, in the xt -domain. If u is given at t = 0, then we 
can compute u(t) for t > 0. One can approximate the 
required solution by the functions 

” 
u’ = c u+p + wp + u;cc~3’, I= 1, 2, . . . . p, (2) 

,=I 

where 

g!” = x-si-1 
I s; - sip 1’ 

x E Csi- 17 si), 

si+l-x 
=- xECSi,S;+l), 

Sifl -s,’ 

= 0, elsewhere, Pa) 

a!*’ = 4 

(si-sz-l)2 
(x-si- I)(si-x), x E cs, - I, Si), 

=(s- 4-s)2(X-~i)(Sl+l-X). XE cs,, Si,,), 
r+l I 

= 0, elsewhere, (3b) 

g(3)= - 
12& 

I (s;-sj- 1)3 
(x-sj-,)(s,-X)(X-t(Si~* +Si)), 

XE Csi-l, si)t 

12J5 
=ts- -~)3(~--Si)(~i+1-~)(~--t(~i+~,+1)), 

r+l I 

XE csi, s,+,), 
= 0, elsewhere. (3c) 

In the above CI~‘), u!*), and CX~” are called the shape func- 
tions or the basis functions and are illustrated in Fig. 1. 

Then, the solutions on the jth cell [sjP i, s,] can be 
expressed as 

u’= a;-,+ 
[ 

~~~~~ll(x-~j-~)+4(1~,+~~) 

x (x-sj-,)(sj~:, 
(Sj-Sj- I)* 

+ 12 J? (U1-I -u;, 

~(x-sj~l)(sj-X)(X-~f(sj+sj~,)) 
(sj- sj- ,)3 1 9 

(4) 

FIG. 1. Basis function of the non-hierarchical P-version MFEM. 

Obviously, the solution U’ is a function of CZ~( t), w:(t), af (t), 
and s,(t), i= 1, . . . . n; l= 1, . . . . p; i.e., 

u’= t&{(t), . ..) a’,(t), w:(t), . . . . w;(t), u{(t), . . . . 

u:(t)? s1(t), ..., s,(t)). (5) 

The first derivative of u’ with respect to time t is given by 

Defining 

(7) 
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one thus finds The above equations can be written in matrix form, 
n 

ti’= 1 cphf+a f”$ + a;3’?jj + psi. (8) 
i= 1 

Here o+.!‘), MI*), 
by ’ 

and a!” are listed in Eq. (3), and /If is given where 

A(Y) jl= G(Y)> (13) 

B;= --mja~“+4(w:+~j~,)((sX_sS.~~:~-8(w:+lr:-~) 
I 11 

x (~--i-l)(~,--x) 

(Sj-Si- *)3 
+ 12 J3 (II- , - uf) 

x (x-si-*)[(x--(Sj+Si~*))-~(Sj-X)] 

(si-s,-1)3 

y= (a:, . ..) a:, w:, . ..) wf, v:, . ..) vf, s,, . ..) a;, . ..) a;, w;, . ..) 

wp u1 n, n, ‘.., $9 SHIT (14) 

and 

-36&u;-,-of) 
(x-sj~*)(si-x)(X-~(Sj+Si-*)) 

(sj-Si- *)4 ’ 

x E Csi- 13 si), 

G=k,, g,, g3,-9 g,nx(3xp+,J (15) 

are n x (3 x p + l)-dimensional column vectors of the 
unknown parameters and A is the (n x (3 x p + 1)) x 
(n x (3 x p + 1)) matrix, 

= -m:+ ,a!‘) 
(Si+ 1 -x) 

--4(w:+w:+,)(S;+l-Si)2+8(U’I+~~+,) 

x Cx - si)(si+ I - x, 

tsi+ 1 - si)3 

-12Ji;(vj-vf+,) 

x(Si+l-X)C(X-f(Si+Si+l))+f(X--S,)l 

tsi+ 1 - si)3 

A= 

A, B, 
C2 A2 4 0 

C3 A3 B, 

. . . . . . 

0 Cn-I An-, Be, 

C, An 

+36,/b(v;-v;,,) (X-Si)(Si+l-X)(X-~(Si+Si+l)) 

tsi+ 1 --si)4 ’ 

x E Csi, Si+ 119 

= 0, elsewhere. (9) 
In the above, 

a!-dpl 
rn.j = ’ ’ 

sj-sip,’ 
I / (10) 

m.;. 1 = 

a-+,-u- 

si+, -$’ 

The residue R is defined as 

Here, 

Cj = D;,;- 1 + d,,+ , , 

A; = D,,i + &, 

Bi=Di,i+l +Di,i+l, 

D,, = 

4, c,, 

Ei,j 0 T:, 

Ez.j Tf,j 

. . 9 (18) 

0 Ei,j Tfj 

H,fi Hfj Hji . . . Hfj Q,:, 

R=i-L(u). (11) 

The values of ai, w.j, ui, and sj are chosen in a least square 
sense, i.e., 

where 

WC RI = o 
aci; ’ 

a(R R) = o 
a6.j ' 

WWzO 
ati; ' 

a@, WC0 
3: 

(12) 

( 

(al”, a;‘)) (aj’), a)‘)) (a:‘), a:“) 

Ei, j= (a!*), a;‘)) (a:*), a:‘)) (a:*), a;.“) (19a) 
(ai3), a)‘)) (a!3), a:‘)) (a!3), C$“) 

T:, j = ((a;‘), B:), (a:*), pi), (aj3), bj))’ (19b) 

Hi,j= ((PI, a;‘)), (flf, a)*‘), (p:, aj3’)h (19c) 

i= 1, 2, . . . . n: i = 1, 2. . . . . n. (19d) 

(16) 

(17) 

usj ” 
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and D, j are (3 x p + 1) x (3 x p + 1) matrices, n is the total 
number of nodes. Di, j is a zero matrix except when j = i - 1, 
j= i, j = i + 1, in which case the last element (i.e., the 
(3 x p+ 1, 3 x p+ 1)th element) has the value di,j, where 
di,i-,=-eF forj=i-1; di,i=ef+ef+l forj=i; dj,i+l= 

-ef+ 1 for j= i + 1, and ei is defined in Eq. (21a) below. The 
right-hand side of Eq. (13), G, is a column vector of order 
n x (3 x p + 1) whose elements are 

g(3p+l)iG3p- - (@j”, L’(u)), 

g(3p+ I),-(3p- I)= (4”? L’(U))> 

g(3p+l)i-(3p-2)=(a13)9 L1(u))9 

g(3p+ l)i-3 = tQ11)9 Lp(u)L 

iT(3p+ l)i-2 = (4*), LP(U))? 

g(3p+ l)i& I = M3), LP(U))> 

P 

(20) 

g(3p+l);= C (Bf3 L’(u))+ei~;-ei+,Fi+,, 

/= I  

i = 1, 2, . . . . n. 

In the above, 

k, ef= (si-si.,)-k, +k3’ @la) 

k, 
F’=(sj-sip,)-k,’ 

i = 1, 2, . . . . n, @lb) 

where k,, k,, k,, and k, are small positive constants; ei and 
Fi are called regularization terms introduced by Miller to 
prevent matrix A from becoming singular. 

3. DIMENSIONLESS GOVERNING EQUATIONS AND 
BOUNDARY CONDITIONS 

The simple MFEM; as a direct result of the above 
non-hierarchical p-refinement MFEM, is be applied in this 
section to solve the flow fields at large times, covering the 
last part of the pre-bubble formation stage, the interface- 
formation stage, and the bubble developing stage. Define 

L = ( npo~*TJ”2. 

E=2np,R2R2S’xdx(e+fli2)/1;, 
0 

ug = (R*To)“* 

and introduce the dimensionless variables, 

wheref, is the body force per unit mass. The related symbols 
were defined in part I except for the new symbols introduced 
in part II. The governing equations and the boundary 
conditions, i.e., Eqs. (l)-(5) in part I [ 141 become 

(22) 

(23) 

and 

where dr and pa are the partial derivatives of p with respect 
to F and fi, and 

aij To ap --- 
z- pou; aT’ 

Horvath-Lin’s equation of state [S] and the specific 
internal energy equation associated with the equation of 
state are 

(25) 

581/103/l-IO 
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and 
(31a) 

(3 

Here a, j?, and y are the parameters in Horvath-Lin’s 
equation, The partial derivatives, j?~ and j?,- are given by we obtain a system of ordinary differential equations in 

the form of Eq. (13), where the A(y) is nearly singular. 
Equation (13) is, therefore, a stiff ODE system and care 
must be exercised in constructing its solution. 

4.2. Implicit Backward Euler Stiff ODE Solver 

The boundary conditions at ? = 0 are 

Backward Euler and Newton iteration formulae. The 
implicit backward Euler formula (IBE) is chosen to solve 
Eq. (131, 

ii = 0, An+l(Yn+, -~n)=h.G,+,, (32) 

aT 
-= 
a? 

0, (274 where h is the time increment At, subscripts n and n + 1 
signify values evaluated at the n th and (n + 1) th time steps. 

ap 4-a la [ 1 
The damped Newton iteration method is used to solve the 

-=- a? 3c”g TG(“‘) . above nonlinear algebraic system for y, + i, 

yL”,i” = y:“,‘, - (F;$‘J’ . FL”,1 ,, (33) 
The third equation of Eqs. (27a) is derived from the momen- 
turn conservation equation, and also can be written in the 

where 

non-conservation form with condition ii = 0 as 7 + 0, FL-$ =A;“!,(y;“,l, -yn)-hC;~, (34) 

The boundary conditions as F + cc are 

ii = 0, P= 1, IT= 1. 

4. IMPLEMENTATION OF THE MFEM 

and 
(27b) 

F 

(28) 

= AC”’ + 
aA;“1, aG;2 1 
-(Y2,-YJ-A---- n+l ay;?, aY5”2, 1 . (35) 

In the above, FLcil, is the Jacobian, ypj, is the value of y, + , 
obtained after s iterations, and AL? i and CL?, are A and G 

4.1. Operator 
evaluated by yi?, . The starting value of iteration, denoted 
by yE”,1,, is obtained by solving the explicit linear algebraic 

Applying the simple MFEM to the governing equations system. 
(22), (23), and (24), written here in the form 

Jacobian. The Jacobian can be given by Eq. (35) in an 

u = (6, ii, T)T, (29) 
analytic form or by a numerical difference scheme, 

(30) (36) 
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The analytical form is used in this paper for better accuracy. 
We find that more than 80% of the total work is in 
calculating the Jacobian F’ and its inverse for both the 
discretization process and the CPU times. The process of 
constructing the Jacobian in analytic form is illustrated in 
Appendix A. 

IBE ODE solver. The IBE ODE solver is constructed by 
combining the implicit backward Euler formula and the 
Newton iteration method described above. The related 
error analysis is illustrated as follows. 

The truncation error E, of the IBE ODE solver is 
determined by Milne’s device [6]: 

E,=$(y;$-yCo’ ) nfk . (37) 

From the truncation error analysis, one can find that 

y(X,+k)-y~st3k=EI+O(hp+*), (38) 

where Y(x,+~) is the exact solution, y:?, is sth iteration 
solution, and p is the error order of a given difference 
operator (cf. p. 23 in [6]). The local truncation error of E, 
is of the order of hP+ ’ (cf. p. 48 of [6]). Therefore, the 
relative error Ere, can be expressed as 

-Fe, = 
E, 

Y,% +E,’ 
(39) 

Taking into consideration the A-stability of the IBE ODE 
solver, one can determine the time step length by the 
following error control requirements: (a) the truncation 
error E, d E,, (b) the relative error &, d E,,,, (c) the residue 
of Newton iteration E, = resi = 11 F 112, E, < E,,, where Ed, E,,, , 
and E, are the given tolerances. The following tolerances are 
used: E, = lop3 except at beginning of the developing stage 
for which E,= 10p4, Ebb,= 10p3, and E,= 10p3. The time 
step length h is always less than 10e3 if E,= lop3 and 
& rel = lop3 are used. For the implicity backward Euler 
formula, the local truncation error has the order of h*. Thus, 
E, is always less than 10p6. 

4.3. Boundary Conditions 

Taking into consideration the boundary conditions 
Eqs. (27) (here using u instead of ii, etc., for simplicity), one 
finds that 

u1 =o, 

T, = T,, (40) 

~2-01 =fb,, $3, ~2, ~3, T2, T3), 

where the form off depends on the manner by which 
Eqs. (27) is approximated. 

The first derivatives of u, , T, , and u2 - vi with respect to 
time t become 

ti, =o, 

F, = F*, (41) 

d, - ti, = cp(S,, s,, ti,, li,, f’2, k ~2, ~3, ~2, ~3, T2, T3). 

The matrix A and the Jacobian F’ will be revised due to 
the contribution of boundary conditions. 

On the other hand, we use a sufficiently large value of x, 
to replace the boundary condition of mathematical infinity. 
The numerical results show that there is no notable dif- 
ference in the solutions for x, = 5Rshock and x, = 2Rshock. 
Therefore, we can fix a sufficiently large value of x,, say, 
xe = flock for the whole calculation. 

4.4. Regularization Parameters and Node Number 

The regularization parameters k’s can be divided into two 
types. One is k, and the other is k,, k,, and k,. k, represents 
the minimum separation of two neighboring nodes and is 
simply assigned a value which would accurately resolve the 
critical physical processes. The values of k2, k,, and k, 
prevent the system from becoming unpredictably stiff and 
yield efficient numerical solutions. A number of different 
arguments yield the following Miller’s suggestion to select 
the k’s [S] 

A2 
ej - x.9 

B2 
eiF’wo2) 

B* N vq*, 

k, e-=p+k,, 
’ As,-k, 

k, FiC----- 
As,-k; 

(cl 

Cd) 

(4 

In Eqs. (ak(e), q is the tolerance of the truncation error, v 
is the coefficient of the diffusion term, and A is considerably 
larger than q for the sake of smoother regularization of the 
nodal movement; Asi = si - sip i, si is the nodal position. 
For the radiation-induced cavitation process, we assume the 
minimum separation of nodes k, = 10e4, q = 10p3, and 
A= 10p2, and As,wkl and (As,-k,)wkl. The coefficient 
of diffusion term TX, is about 10-l. From Eqs. (a) and (d), 
we obtain k, = 10m4, supposing k, = 0. From Eqs. (b), (c), 
and (e), we find k, = 10p3. Miller [4] indicates that the 
calculation will be accelerated if the larger k2 and k, are 
used. Our calculations of Burger’s equation reach the same 
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conclusion. We tried k2 = 10~4-10~2 for the radiation- where xR = R/L is the dimensionless bubble radius and 
induced cavitation process and found that there is no x = rJL is the dimensionless radial distance, where L is the 
notable difference between the solutions. Therefore, we characteristic length, 6(x - xR) is a one-dimensional delta 
selected k, = 10e2 for efficiency. function. 

In summary, in case of isobutane and Freon-12, the 
following regularization parameters are selected: 
k, =0.0001, k, =O.Ol, k, =O.O, and k, =O.OOl. The node 
number is 14. Generally speaking, the solutions are not 
sensitive to the regularization parameters if the k’s are 
selected within certain regions by some estimations [S]. 

The surface tension 0 as a function of temperature T can 
be described by [9] 

(44) 

4.5. Treatment of Discontinuous Quantities 

In the above equations, some parameters such as the 
viscous coefficient p, the specific heat capacity c,, and the 
thermal conductivity K undergo an abrupt change once 
the bubble is formed, due to the existence of two distinctive 
regions, i.e., the vapor region and the liquid region. Further- 
more, once the bubble is formed, the surface tension of the 
bubble will also be presented. The surface tension behaves 
like a d-function centered at the point xi. The mathematical 
treatment of the above discontinuous quantities will be 
discussed in this section. 

Surface tension. The difference in pressure across a 
cylindrical interface (Fig. 2) is 

4 T) Ap=- 
R ’ 

(42) 

where R is the radius of the interface and a(T) is the surface 
tension at a temperature T. This relationship can be easily 
derived by considering a momentum balance across the 
interface, assuming that the interface propagates at a low 
Mach number. This pressure change can be accounted for 
by postulating a body force distribution given byTrT,e,, where 
2, is a unit vector in the radial direction and J: is the 
dimensionless body force, 

where [p] is a parameter related to the components of a 
given liquid and determined by experimental data; plb is the 
liquid density at the boiling temperature T,. The reduced 
temperatures T, and Tbr are T, = T/T, and T,, = T,/T,, 
respectively. The parameter n is given by experiments. 
Finally, the dimensionless quantityyr can be expressed by 

where 

clp = ([PI P,b)4, UT= (1 - Tbr), 

(46) 

Introducing the above into the right side of the momen- 
tum equation, i.e., Eq. (23); with the understanding that?: 
is zero unless the density gradient is sufliciently large, the 
governing equations can again be recast in the form shown 
in Eq. ( 13). For example, the term on the right-hand side of 
Eq. (20) can be calculated as 

=(xR--si-l)fr - 

(Sj-Si- 1) L ’ 
xR E ($iL IT  si) 

-f,* 

L’ 
xR=s, 

=(s;+l-xR)f, - 

(s;+,--si) L’ 
XRE(Si~S,+l), (47) 

where 

(48) 
FIG. 2. Surface tension. 
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P A 

P 
e 

FIG. 3. Property function 

and xR is the position of that node when the density 
gradient has exceeded a critical value, arbitrarily chosen to 
be 15. 

FIG. 4. Phase equilibrium for the superheated state. 

Discontinuity of medium properties. The following func- P/(PU~ ) 0 20 1 46 4 P,‘P 

tions are introduced to describe the discontinuities of the 
0 

viscous coefficient and the thermal conductivity such as crltlcal pomt I 

(49) 

0.15 - Isobutane, C,H,, 34 a 

PO=1 atm 

Horveth-Lm Equation 0 10 - 23 2 

Fe 

assume that the viscous coefficients and the thermal conduc- 
tivities (also the special heat capacities) of both liquid and 
vapor are constants. The property function defined by 
Eqs. (49) is illustrated in Fig. 3. The specific heat capacity 
can be treated in a similar way. 

The subscripts I and u represent liquid and vapor, respec- 
tively. F, is the dimensionless temperature at the bubble 
wall and 6 is a small number, e.g., 10P4. In the above, we 

0.00 1 I I 1 0.00 
0.8 

P/(p”;) 0 20 

10 1.2 14 

T /T ,  

FIG. 5. Phase-equilibrium relation (P- T). 

r , 46 4 P, P 0 

Equation of state. A typical isotherm in the pv-diagram 
for Horvath-Lin’s fluid is shown in Fig. 4. It is well known 
that the pressure at which the vapor phase is in equilibrium 
with the liquid phase is given by Maxwell’s area rule. That 
is, at the equilibrium pressure pe, the two shaded areas LBN 
and NCV are equal. This condition allows one to determine 
the vapor pressure p,(T) as a function of temperature T. 
This is shown in Fig. 5. The vapor-liquid coexistent line in 
the pv-diagram is shown in Fig. 6. 

0 15 

0 10 

0 05 

c 

crltlcal point Isobutane C,H,, 

PO=1 atm 34.8 

\ 
Horvath-Lm Equation 

\ 

L 

c 

0.00 
” 10 20 30 40 

V/‘Vo 

FIG. 6. P,, r”,, and P, via phase-equilibrium. 

5. TESTING MEDIA 

Isobutane and Freon-12 are used as the testing media. 
Their properties and relating data are listed in Tables I 
and II. 
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TABLE I 

Parameters of Testing Media 

Medium 
(chemical formula) 

dE/dx(MeV cm2/g) 
E ncutlon WW 
E (g cm/s2) 
R, (cm)(experiment) 
L(cm)E=E, 
a (ergs cm2 “K/g2) 

6 (48) 
c (cm?g) 
$0 

Tirng 
(“K) 

n 

Isobutane Freon-12 

(C,H,o) (C(CLh F,) 

6.98 1.28 
1.55 0.20 

6.2318 x lo-’ 2.7263 x 1O-3 
1.186 x 10-S 4.083 x 10m6 

0.29132x 1O-5 1.2475 x lo-” 
1.63379 x 10” 1.23043 x lOI 

1.35930 1.13214 
1.46077 1.27942 

0.0043349 0.0018170 
261.3 243.4 
191.0 171.6 
0.29 0.31 

Isabutane: C4H10. To=2OC. i?= 1 O& 1’ 

x=r/L 

1.2 

1.0 C4HlO. To=ZOC. F=l.O& 

0.6 &.O.Z6O+td. t=ug*t/L 

YFEM solutions. n= 14 

0.6 

6. RESULTS AND DISCUSSIONS 

The results calculated by the MFEM will be presented 
and compared with the experimental results in this section. 
The relating analyses will be given. 

0.4 

0.2 

0.0 
0.0 0.2 0.4 0.6 0.6 1.0 

6.1. Flow Fields 12 d=P/Po 
” ” : ” / ” 

Density distribution. Figures 7a, b, c, and d give the den- 
sity distribution of isobutane with input energy i? = 1 .OE,. at 
the initial temperature To = 2O”C, where 1,. is the threshold 
energy determined by experiments. Quantitatively, it is 
equal to the stopping power dE/dx, i.e., i?,.=dE/dx. 
Figure 7a is a reproduction of the density distributions in 
the initial and pre-bubble formation stage given earlier 
(Fig. 12 in part I) with time relabeled in terms of i. Figure 7a 
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c,, vapor W/k mol - “K)) 
~c,~,,,,,~ W/(g .mol - “K)) 
(rl) vapor (pp* = 10m6(dynes/cm2)) 

(Vhiquid (CP* = 10-2(dyWcm2)) 
q,apr (peal/cm s “K) 
K,,+, (peal/cm s “K) 
M (molecule weight) 
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(GH,o) (C(CL)2 F2) 
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FIG. 7. (a) Normalized density distributions in the pre-bubble forma- 
tion stage. i=O.O50, 0.138, 0.233, and 0.280 are equivalent to R=0.49, 
0.99, 1.49, and 1.74, respectively. (b) Normalized density distributions in 
the interface formation and developing stages from td= 0 to rd= 1.00. 
(c) Normalized density distributions from rd=O to rd= 4.00. (d) Nor- 
malized density distributions and shock waves from rd = 0 to rd = 4.00. 

! 
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shows how the density fields change from the beginning 
stage to a certain instant preceding the formation of a 
vapor-liquid interface, say, 2 = 0.280. The flow field at this 
instant will be used as the starting values of the MFEM. 
Figure 7b gives the density distributions computed by the 
MFEM from i-0.28&1.0 within the space region x= 
r/L < 1.0, or equivalently, td = C1.0, where i= 0.280 + td. 
Figure 7c gives the density distributions from td = O-4.0 
within the space region x = r/L d 2.0 and Fig. 7d illustrates 
the density fields from td = o-4.0 within the space region 
x < 12.0. 

Figure 7c shows that the density gradient becomes 
steeper and steeper with time evolution. In the calculation, 
the surface tension is introduced if db/W k 15.0. This 
requirement means that the vapor wall thickness a, < 0.066, 
i.e., d,. = 2,. L = 19.2 x 10P8 cm = 19.2 A. In Fig. 7b, one 
can see that the density gradient is first greater than 15.0 at 
td = 0.0843. This is taken as the instant when the vapor 
liquid is first formed and the surface tension is first applied. 
As time develops to td = 0.2550.50, the density becomes very 
steep at some section. On one side of this section, the density 
becomes very low, while on the other side, the density p 
approaches 1 .O. The apparent “glitch” in the density curve at 
td = 0.15 shown in Fig. 7b is, upon closer examination of the 
numerical printout, a reflection of a fluctuation in the den- 
sity profile at nodes 7 and 8. It is caused by the introduction 
of the surface tension at t = 0.0843, since no such fluctua- 
tions are detected when no surface tension is introduced. 
From the physical viewpoint, the abrupt incorporation of 
the surface tension effects at this stage should not affect the 
solution because surface tension tends to zero at the critical 
point. Numerically, however, the instant when the critical 
point is first reached somewhere in the medium cannot be 
established with infinite accuracy; as a result, the effect of 
surface tension is felt suddenly rather than gradually. For- 
tunately, the transient abnormality disappears in a few time 
steps and there is no cross-over of mesh nodes in the whole 
calculation. Figure 7c also shows that the velocity of expan- 
sion of the vapor cavity around td = 2.0 is slower than that 
at any other time and that the expansion velocity increases 
for td > 2.0. Thus, there exists a critical radius above which 
the bubble expansion will accelerate. It is interesting to note 
that the critical bubble radius is about 0.9C1.00, occurring 
at td = 2.0 f 0.30. Figure 7d gives the density distribution 
over the range 0 < r < 12L. The location of the vapor-liquid 
interface and the shock front can be readily identified. 

Temperature distributions. The temperature distribu- 
tions are shown in Figs. 8a, b, and c. Figure 8a is for the case 
of small time, i.e., i < 0.280 (ii < 1.74), and is a reproduction 
of Fig. 9 in part I. Figures 8b and c give the temperature 
distributions up to the instant i= 2.280. It is clear that the 
temperature drops rather quickly at first, but the decrease 
slows down with time. 
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FIG. 8. Normalized temperature distributions (a) in the pre-bubble 
formation stage; (b) in the interface formation and developing stages from 
td = 0 to td = 2.00; (c) and shock waves from td = 0 to td = 2.00. 

Velocity distributions. Figure 9a is a reproduction of 
Fig. 14 in part I with the velocity distributions for i < 0.280. 
Figure 9b shows the velocity distribution for 2> 0.280. 

6.2. Collapse of Bubble 

The bubble will expand indefinitely in a fluid of infinite 
extent if the input energy is greater than the threshold 
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FIG. 9. Normalized velocity distributions in the (a) pre-bubble forma- 
tion stage; (b) interface formation and developing stages from td=O to 
fd= 1.00. 

energy; otherwise, the bubble will collapse under the action 
of surface tension and viscous forces. What is the collapse 
process? It is difficult to follow this change in the laboratory 
because the time scale is about 0.1-1.0 ns and the length 
scale is of the order of IO*-lo’,& However, numerical 
analysis can model the actual collapse process in detail. 
Both isobutane with input energy E= 0.45(E,)i,,b”tane 
at T,=2O”C and Freon-12 with input energy E= 
0.30mFreo”42 at T,, = 20°C are studied, where i?,. = dE/dx 
is the experimentally determined threshold energy. 

Zsobutane case. The bubble will not stop expanding 
until approximately time td = 1 .O when the bubble starts to 
contract. 

Freon-12 case. The same phenomenon occurs for 
Freon-l 2. The bubble starts to contract around td = 2.17 
with i? = 1.10. 

The collapse process for both isobutane and Freon-12 are 
shown in Figs. 10 and 11 as discussed below. 

6.3. Critical Radius and Threshold Energy 

The critical radius R,. and the threshold energy E, can 
be determined by plotting R vs t, where R is the vapor 
radius and t is the time. Figure 10 gives the R vs t 
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FIG. 10. Bubble radius R vs time t (isobutane). 

curve of isobutane. For i?= 0.50E,, R z const = 200 A 
for f > 0.20 ns. This means that the process is almost in 
a state of static balance. On the other hand, if E = 0.45E,., 
the bubble will start to collapse around t = 0.13 ns. 
This picture indicates that the threshold energy is E= 
0.45E,XL50E,.. The critical radius is about R, = 200 A 
or R,=0.20x lo-‘cm. 

Figure 11 gives the relation of R vs t for Freon-12. The 
bubble starts to collapse around t = 0.084.09 ns for input 
energy E= 0.30E,. The threshold energy is between 0.30i?, 
and 0.40E,, and perhaps closer to i?= 0.30E,.. The critical 
radius is about 0.9G1.05 x lop6 cm. Table III summarizes 
the critical radii obtained by experiments and numerical 
analysis. ’ 

Reviewing the above results, one finds that the com- 
parison between the experimental and numerical results are 
fair, considering that a number of drastic assumptions have 
been made to develop a tractable model. The principal 
cause of the difference can be attributed to the following 
factors: (1) The critical radius for the spherical bubble 
(experimental model) is R;, = 2a( T)/Ap, while for the cylin- 
drical bubble (numerical model) R:: = a( T)/Ap. This means 
that R: = 2R :: if surface tension rr and pressure difference Ap 
are the same for both cases. (2) The energy is assumed to be 
deposited in the media uniformly along an infinite line in the 
numerical analysis, while the energy in the real case is 

1 The critical bubble radii in the experiments were calculated by 
R,. = 24 T)/dp( T), where c = 13.99 - 0.1085T for isobutane and 
0 = 0.1034( 112 - T) for Freon-12. The surface tension r~ for numerical 
solutions is determined by Eq. (44). The following are the values of surface 
tension calculated by above formulae at T= 20°C: for isobutane, 

&;:: 
= 10.89 dynes/cm, (u& = 11.82 dynes/cm; for Freon-12, 
= 12.33 dynes/cm, ((T),,~~ = 9.51 dynes/cm. The ratios are 

(R,.L,rI(4)num = 5.239 for isobutane and 5.426 for Freon-12. 
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FIG. 11. Bubble radius R vs time t (Freon-12). 

deposited within a limited region. (3) The pressure dif- 
ference Ap defined in experiments is given by Ap = p, - pm, 
where pu is the vapor pressure within the bubble for isother- 
mal, isobaric, and static case; and pm is the pressure in the 
infinite region. Both pu and pm are functions of temperature 
T (T= TO = 20°C in the testing cases). Therefore, the 
pressure difference Ap is also a function of temperature T. 
The above isothermal, isobaric, and static case is different 
from the dynamic process where the temperatures and 
velocities within or outside the bubble are functions of 
radial distance r and time t. The pressure difference Ap is 
always larger than that obtained by the above experimental 
definition. Since Ap cc 1/R,, one sees that although 
theoretical and experimental estimates of the critical radius 
R, and the threshold energy are of the same order of 
magnitude, the theoretical values always seem to be smaller 
than the experimental ones. 

6.4. Shock Wave 

From the scaling transformation analysis in part I, the 
speed of the shock wave is given by 

dR 1 
-y=- 
dt f,R 

Integrating Eq. (5 1 ), we find 

2i 112 “==F ( 1 0 
TABLE III 

Numerical and Experimental Results, R, 

(51) 

(52) 

Item Isobutane Freon-12 

Numerical results 
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(R,L,J(R,humer 
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The above derivation can be translated as the following: 
The shock radius in the initial stage immediately following 
the sudden energy ieposition increases with time as i112. 
The shock velocity R varies rapidly with time as i-l/*. 

The above relations are valid only for R < 0.002. In the 
general case, one can draw the curves of jishock vs 7 as well 
as LII vs 7. Figures 12 and 13 give such illustrations 
for isobutane and Freon-12 with input energy E=O.5E, 
at 20°C respectively. Figure 14 gives the shock speeds 

FreonlZ. CCL2F2, TO=ZOC, E=O.50& 

shack xclvc radius - 

10 - 

5- 

bubble radius 

0 I I $=ug*t/L 

0 1 a 3 

FIG. 13. Bubble radius and shock wave radius (Freon-12). 
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FIG. 14. Normalized speed of shock wave (isobutane). 

normalized to a sound speed c of 340 m/s for isobutane 
with input energy E= OSE,. at 20°C. The shock speeds in 
this case are supersonic and have a maximum around 
i = 2.4 and decrease later on. The speeds of the vapor-liquid 
interface are about l/100 of the shock speeds. 

6.5. Some Time and Length Scales 

The time and length scales for the bubble formation 
depend on the given medium and the input energy. For 
isobutane, the bubble forms at t = 0.05 ns, collapses at t = 
0.12-0.13 ns, and the related bubble radius is about 100 A. 
For Freon-12, the bubble forms at t = 0.02-0.04 ns, collap- 
ses at t = 0.08-0.09 ns, and the related bubble radius is 
about 50 A. Generally speaking, the time scale for bubble 
formation is of the order of lo-‘-lo-’ ns and for bubble 
collapse is of the order of 10-l ns. The length scale for 
bubble collapse is of the order of 5 x lo’-5 x lo2 A. The 
smallness of these scales underscords the needs for 
numerical calculation and the difficulty of experimental 
measurements. 

6.6. CPU Time 

The CPU times on Micro-VAX for calculating the 
developing stages by using the MFEM are about 1 w  4 CPU 
hours. 

7. CONCLUSIONS AND FUTURE DIRECTIONS 

7.1. Conclusions 

The following conclusions can be presented: 

( 1) The general model of numerical analysis developed 
in this paper for solving PDE systems with initial singularity 

and with multiple moving steep gradients is accurate and 
efficient. The numerical results are in fair agreement with the 
experimental results. The scaling transformation and shoot- 
ing technique are used to overcome the difficulty of the 
initial singularity, to solve the flow field of the initial stage, 
and to establish the initial conditions for later calculations. 
The implicit donor-cell finite difference method is intro- 
duced to calculate the solution for short times to improve 
the computational efficiency. Finally, the MFEM is success- 
fully employed to compute the flow field in the developing 
stage with moving shock and moving interface. The success 
of solving the radiation-induced cavitation process by the 
above hybrid numerical model is of significance for this type 
of boundary value problems. 

(2) The radiation-induced cavitation process can be 
divided into four stages. They are the initial stage, the pre- 
bubble formation stage, the interface-formation stage, and 
the post-interface stage. Generally speaking, the tem- 
peratures and the velocities decrease with time evolution. 

(3) There is a threshold energy E, above which the 
bubble will expand indefinitely and below which the bubble 
will collapse under the action of surface tension, viscous 
forces, and as well as conduction heat loss. The threshold 
energy and the critical radius can be obtained from the 
computed R vs t curves. 

(4) The earlier stages of the collapse process have been 
calculated. 

(5) The time scale for bubble formation is of the order 
of 10-2-10p’ ns and the length scale of bubble radii for 
collapse is of the order of 5 x lo’-5 x lo* A. 

(6) The pressure difference dp between the two sides of 
interface may be underestimated by experiments, since the 
average values of the pressures within the related sections 
for both vapor and liquid are calculated for the isothermal, 
isobaric and static case instead of the pressures at certain 
points for a dynamic case. It may lead to over-estimation of 
the threshold energy and the critical radius R,.. 

(7) Miller’s moving finite element method is found to be 
an efficient adaptive method which moves nodes automati- 
cally into the regions where the gradients are large. The 
MFEM is useful especially for solving PDE systems with 
multiple moving steep gradients. A general form of 
non-hierarchical p-version moving finite element method is 
derived. 

7.2. Future Directions 

Future directions may be classified into two categories: 

(1) Application and improvement of the current 
method of solution. 
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(2) Extension of the current model to reflect more 
realistically the radiation-induced cavitation process 
observed in the laboratory. 

Under the first category, one may cite the following topics 
for investigation: 

1. Determine the threshold energy for cavitation for 
other types of liquid with low boiling points. 

2. Study the effect of degree of superheat on the 
threshold energy. 

3. Study the effects of viscosity, thermal conductivity, 
and surface tension on the solutions. 

4. Modify the MFEM to handle problems with multiple 
propagating steep gradients. One shortcoming of Miller’s 
method is the utilization of the regularization parameters 
whose values must be appropriately chosen for each type of 
problem studied. While Miller did indicate some of the 
guidelines in choosing them [S], the question remains as to 
whether some other scheme may be devised to overcome the 
difficulty of the vanishing Jacobian in the approximation 
matrix. 

With regard to improving the current method to reflect 
more realistically what occurs in nature, the following topic 
stands out prominently: Take into account the fact that 
energy is deposited along a finite line rather than an infinite 
line as assumed in the current model. This change would 
require a major extension of the current program to cope 
with the propagation of steep gradients in three-dimen- 
sional space. 

APPENDIX A 

We rewrite the mass conservation equation, i.e., Eq. (22), 
as follows: 

afi 3 a ii? 
-;=-- - 

0 at r a? 5 
we aa aii =uU-ii--++ 
i ai at (A.1) 

The integration of the simplest term zX/lr’ among them can 
be calculated by 

= A, + A* + I, + A,. (A.21 

Here 

xh4. 1 

2 (imsi- 1 + ipsi)’ 
(A.3) 

2, = (iii + (I, diii)(Ci + i, dUi) [, 

dsi 1 

XT’(ipsi+im7si+I)’ 

A4 = (iii + ip diii)( ai + lp dv”i) i, 

dsi 1 

XT’(i*si+ipsi+l)’ 

where 

dii-I=iii-ii-,, dVi_,=iTi-v”i-l, 

dsip, =sj-sj-, 

and 

dii, = iii+ 1 - iii, diYi = ai+, - Bi, dsi=si+l-si. 

In the above derivation, the integrations are computed by 

I(/,=,( --$)+f(-$). 

The corresponding terms in the Jacobian are 

aR, A,(1 - LJ Ul -i,) 
-=(a,-~+i,.d~i-,)‘(Bi-,+ip.d~i~,)’ dCi- 1 

aR, &(l -LA J2(1 -i,) 
-=(lii-I+i,.dtii~l)+(~i~l+ip.drji-L)I aii-, 

aRl -() 
(A.4) 

r- 3 
al,-, 

The other terms, i.e., aR,/aiT,, aR, J&i,, iTR,fa?+i, i3R,/lGi, 
aRl/Zi+,, aR,/a&+,, aR,la~i,,,andaR,lasi., canalso 
be derived in a similar manner. 
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The above sample is the simplest case for our problem. It 
presents a brief picture of how to calculate the Jacobian and 
an illustration of the enormous computational work 
involved. 
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